
Appearance

PILLAR FIRE HYDRANT type NH2

<Two in one = hydrant + isolating pre-valve>

<Double reliability = use even when main valve is defective>

PROCUREMENT DATA:*1 <great flow (Kv= 278 m³/h)=minor fire damage>

*The possibility of blocking unauthorized use. *Flow (for Di=2x65): Kv=min 270m3//h.

*Activation moment: MOT= max. 50Nm (Class 1).

*Repair of the main valve: the other hydrants remain in operation, without digging up the ground and without dismantling the hydrant body.

*Drainage drain closed already at 20% opening stroke.

*Drainage drain repair: outside, without dismantling the hydrant. *With a defined place of breakage due to impact, in the underground part.*3

* Fracture; without damage to the pipeline, automatic stop of water discharge.

*Breaking moment M= max 7800 Nm.*3 Flange EN1092-2

(Du100, PN16) (Du150, PN16) *Input connection: -Particular request, "describe"

-(1350) (1550) (1850) mm *Nominal height Hi:--Particular request, "describe"

(2x65+1x100) mm *Outlet opening Di:--Particular request, "describe" *Outlet couplings:

Specify label and standard .D1

Without D2(particular request) *Drainage: Technical

*Medium:Water Drinking *Colors of external surfaces:

red overhead part (not pipe):

- special request underground part: black

*Submit documents:

-"Prospect",

-"Test report", issued by the "authorized body",

-Valid "Certificate of Conformity", issued by an

"authorized body",

*1→ "Omit/Add" as needed

The standard determines min. performance,

and recommends the better Appearance:

1.Inlet flange 2. Isolation "pre-valve"

3. Obturator - "main valve"

4. Body 4.1 Place of breakage, Due to the impact of force F

5. Cap 6.Blocking of unauthorized use

7. Control valve (safety; sealing)

8. Outlet couplings

9. Identification plate ("CE", "K_v",)

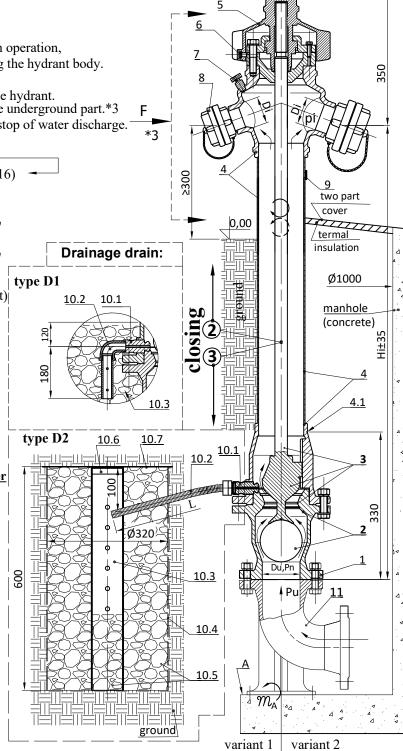
10. Drainage drain: (not defined by the standard)

type **D1**:

10.1 Drain valve 10.2 Drain pipe

10.3 Stone — (16÷31)mm*4

type **D2**:


10.1 Drainage valve 10.2 Drain pipe **-**(L=?) mm

10.3 Distribution pipe 10.4 Wire basket

10.5 Stone -- (16÷31) mm*4

10.6 Cover 10.7 Plastic foil

11. Arch with foot EN545*4 - Provided by the buyer

Srbija - 26000 PANČEVO, Savska 12 - 14. Tel. +381 13 346226 Tel./Fax +381 13 346042 www.tecoop.co.rs / tecoopeng@mts.rs

*3 foundation

TECOOP - ENG D.O.O

PILLAR FIRE HYDRANT type NH2

<Two in one = hydrant + isolating pre-valve> <Double reliability = use even when main valve is defective> <great flow (Kv= 278 m³/h)=minor fire damage>

Basic technical characteristics:

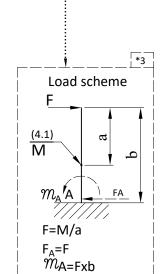
- *Safe = complies with the requirements of the standard EN 14384 = (
- *Purpose: Useing water from underground pipelines for fire fighting and communal needs
- * See "Procurement Data" L1/2
- *Flow: $\overline{Kv} = 278 \text{m}^3/\text{h}$, for Di = 2x65
- *moment of activation Mot: max 45Nm, (Class 1)
- *moment of breakage (at point 4.1) due to force F..... M=7500 Nm
- *foundation
- *weight...... \sim (65÷76) daN for Hi (1350÷1850) mm
- *materials:
- -hydrant body castings..... nodular cast
- -cap, and output couplings..... aluminium
- -sealants.....polypropylene/elastomers
- -pipe of body, spindle, and obtutator seat..... stainless steel

Advantage:

- * Isolation pre-valve (2) inside the hydrant, automatic, self-blocking, which enables:
 - that the other hydrants remain in operation even when the main valve (3) malfunction,
 - automatic stop of water flow, in case of breakage (4.1) due to force F,
 - to omit a separate isolation valve in front of the hydrant,
 - lower cost of construction and maintenance of the hydrant network,
 - the use of a hydrant even in the case when the main valve (3) is broken.
- * Large flow: (Kv = 278 m3//h, for Di = 2×65); minor fire damage.
- * The possibility of using a hydrant (drainage drain closed) at a flow rate of (20÷100)%.
- * Prevented damage to the supply pipeline = breakage at point 4.1, due to force F.
- * Activation without additional tools, by turning the cap (5).
- * Possibility of blocking (6) unauthorized use.
- * Possibility to control (7) the correctness of the drainage and main valve, greater operator safety.
- * Easy activation: (class 1, MOT < 45 Nm) longer service life.
- * High reliability of closing: tightness even after 1000 closings.
- * High reliability of the drainage system = two outlet openings, self-flushing drainage valve.
- * High strength of the closure and hydrant body, MsT > 250 Nm.
- * Very easy hydrant maintenance:
 - Replacing the main valve seal (3); without digging up the ground and without disassembling the body (4).
 - The threaded part of the closure is outside the flow of water, permanently lubricated maintenance-free throughout its working life.
 - Possibility (7) of checking the correctness of the drain and main valve.
 - Repair of the drainage valve (10.1); from the outside, partial excavation. without dismantling the hydrant.
 - Easy replacement of the seat of the main valve (3) and pre-valve (2).
 - The main valve seal is conical, self-flushing = dirt retention prevented = longer service life.

Documents with the delivery of hydrant:

- *Declaration of Performance
- *Instruction for safety work (installation, handling, inspection, maintenance, guarantee)


$Q[m^3/h]$ $K_v = 278$ $K_v = 266$

 $Q = K_v \times (1000\Delta p / \rho)^{1/2}$ -flow......Q [m³/h] -flow coefficient.....K_v [m³/h] -pressure difference.....Δp [bar] -water density...... ρ [kg/m³] $\Delta p(=p_u-p_i)[bar]$

Srbija - 26000 PANČEVO, Savska 12 - 14. Tel. +381 13 346226 Tel./Fax +381 13 346042 www.tecoop.co.rs / tecoopeng@mts.rs

Flow of hydrant:

